開(kāi)關(guān)電源開(kāi)始進(jìn)入技術(shù)變換的新時(shí)代
電子設(shè)備特別是計(jì)算機(jī)的不斷小型化,要求供電電源的體積隨之小型化,因而開(kāi)關(guān)電源開(kāi)始替代以笨重的工頻變壓器為特征的線性穩(wěn)壓電源,同時(shí)電源效率得到明顯提高。電源體積的減小意味著散熱能力的變差,因而要求電源的功耗變小,即在輸出功率不變的前提下,效率必須提高。
高效率功率變換:開(kāi)關(guān)電源設(shè)計(jì)追求的目標(biāo)
相同體積的電源的功率耗散基本相同,因此,欲得到更大的輸出功率,必須提高效率,同時(shí),高的電源效率可以有效地減小功率半導(dǎo)體器件的應(yīng)力,有利于提高其可靠性。
開(kāi)關(guān)電源的損耗主要為:無(wú)源元件損耗和有源元件損耗
開(kāi)關(guān)損耗一直困惑著開(kāi)關(guān)電源設(shè)計(jì)者,由于功率半導(dǎo)體器件在開(kāi)關(guān)過(guò)程中,器件上同時(shí)存在電流、電壓,因而不可避免地存在開(kāi)關(guān)損耗,如果開(kāi)關(guān)電源中開(kāi)關(guān)管和輸出整流二極管能實(shí)現(xiàn)零電壓開(kāi)關(guān)或零電流開(kāi)關(guān),則其效率可以明顯提高。
開(kāi)關(guān)過(guò)程引起的開(kāi)關(guān)損耗大致會(huì)占總輸入功率的5%~10%,大幅度降低或消除這一損耗可使開(kāi)關(guān)電源的效率提高5%~10%。最有效的方法是軟開(kāi)關(guān)技術(shù)或零電壓開(kāi)關(guān)或零電流開(kāi)關(guān)技術(shù)。
在眾多軟開(kāi)關(guān)的方案中,比較實(shí)用的有大功率的全橋變換器,通常采用移相零電壓開(kāi)關(guān)的控制
方式,這種控制方式要求在初級(jí)側(cè)需附加一續(xù)流電感以確保開(kāi)關(guān)管在零電壓狀態(tài)下導(dǎo)通,由于較大的有效值電流流過(guò),這個(gè)附加電感將發(fā)熱(盡管比RC緩沖電路小得多),因而在低壓功率變換中并不采用。
無(wú)源無(wú)損耗緩沖電路的特點(diǎn)是不破壞常規(guī)PWM控制方式,設(shè)計(jì)/調(diào)試簡(jiǎn)單。盡管如此,無(wú)源無(wú)損耗緩沖電路和準(zhǔn)諧振/零電壓開(kāi)關(guān)工作方式也存在一些缺點(diǎn),如僅能實(shí)現(xiàn)關(guān)斷軟開(kāi)關(guān)以及在反激式變換器中不太適于大負(fù)載范圍變化。軟開(kāi)關(guān)中有源箝位是提高單管正/反激變換器效率的有效方法,最初的專(zhuān)利限制現(xiàn)在已失效,可以普遍應(yīng)用。
功率半導(dǎo)體器件的進(jìn)步:高效率功率變換的根本
功率半導(dǎo)體器件的進(jìn)步特別是PowerMOSFET的進(jìn)步引發(fā)出功率變換的一系列的進(jìn)步:PowerMOSFET的極快的開(kāi)關(guān)速度,使開(kāi)關(guān)電源的開(kāi)關(guān)頻率從雙極晶體管的20kHz提高到100kHz以上,有效地減小了無(wú)源儲(chǔ)能元件(電感、電容)的體積。低壓PowerMOSFET使低壓同步整流成為現(xiàn)實(shí),器件的導(dǎo)通電壓從肖特基二極管的0.5V左右,降低到同步整流器的0.1V甚至更低,使低壓整流器的效率至少提高了10%。高壓PowerMOSFET的導(dǎo)通壓降和開(kāi)關(guān)特性的改善,提高了開(kāi)關(guān)電源的初級(jí)效率。功率半導(dǎo)體器件的功耗的降低也使散熱器和整機(jī)的體積減小。
電源界有一個(gè)不成文的觀點(diǎn):不穩(wěn)壓的比穩(wěn)壓的效率高、不隔離的比隔離的效率高、窄范圍輸入電壓的比寬范圍輸入的效率高。Vicor的48V輸入電源模塊的效率達(dá)到97%。交流輸入開(kāi)關(guān)電源需要功率因數(shù)校正,由于功率因數(shù)校正已具有穩(wěn)壓功能,在對(duì)輸出紋波要求不高的應(yīng)用(如輸出接有蓄電池或超級(jí)電容器),可以采用功率因數(shù)校正加不調(diào)節(jié)的隔離變換器電路拓?fù),?guó)外在1986年已有產(chǎn)品,效率到達(dá)93%以上。
在DC48V輸入電壓的電源模塊中,效率在93%以上的模塊幾乎無(wú)一例外地采用前級(jí)穩(wěn)壓、后級(jí)不調(diào)節(jié)隔離的方案,并且將第一級(jí)的輸出電容和第二級(jí)的輸出電感取消,簡(jiǎn)化了電路結(jié)構(gòu)。
國(guó)內(nèi)的很多開(kāi)關(guān)電源在設(shè)計(jì)上對(duì)結(jié)構(gòu)設(shè)計(jì)的關(guān)注相對(duì)不夠,有時(shí)會(huì)出現(xiàn)電源內(nèi)的各部分溫升不均,有的地方過(guò)熱,有的地方幾乎沒(méi)有溫升,甚至PCB上產(chǎn)生較大的損耗。一個(gè)好的開(kāi)關(guān)電源應(yīng)該是產(chǎn)生熱的元件均勻分布在PCB上,而且發(fā)熱元件的溫升基本一致,PCB應(yīng)有盡可能小的損耗,這在模塊電源和塑料外殼的Adapter的設(shè)計(jì)中尤為重要。
效率提高的同時(shí):電源的電磁干擾得到減小
在開(kāi)關(guān)電源的各種損耗中,電磁干擾所產(chǎn)生的損耗,在電源效率高到一定水平后將不容忽視。一方面電磁干擾本身消耗能量,特別是電源效率的提高往往需要軟開(kāi)關(guān)技術(shù)或零電壓開(kāi)關(guān)或零電流開(kāi)關(guān)技術(shù)(無(wú)論是專(zhuān)門(mén)設(shè)置還是電路本身固有),應(yīng)用這些技術(shù)減緩了開(kāi)關(guān)過(guò)程的電壓、電流的變化速率或消除了開(kāi)關(guān)過(guò)程,電磁干擾變得很小,不需要像常規(guī)開(kāi)關(guān)電源電路中需要專(zhuān)門(mén)設(shè)置抑制電磁干擾的電路(這個(gè)電路是存在損耗的)。
開(kāi)關(guān)電源進(jìn)入:高效率功率變換時(shí)代
仔細(xì)分析,高效率功率變換看起來(lái)是很簡(jiǎn)單的,甚至有些電路拓?fù)湓?0多年前就有介紹(如兩級(jí)變換拓?fù)浣Y(jié)構(gòu),早在UNITRODE82/83年數(shù)據(jù)手冊(cè)的ApplicationNote的AN19中就有介紹、TEK2235示波器中也采用了這種功率變換拓?fù)浣Y(jié)構(gòu)),但受當(dāng)時(shí)的技術(shù)水平,特別是人們認(rèn)識(shí)的限制(總是認(rèn)為兩級(jí)變換的效率比單級(jí)低,而事實(shí)上兩級(jí)變換可以實(shí)現(xiàn)事實(shí)上的固有的零電壓開(kāi)關(guān),單級(jí)變換則需要特殊的附加電路和控制方式)而并沒(méi)有得到承認(rèn)和應(yīng)用。器件的性能和人們認(rèn)識(shí)的提高已經(jīng)使兩級(jí)變換作為高效率功率變換的主要方式之一。
結(jié)語(yǔ)
如今對(duì)于開(kāi)關(guān)電源設(shè)計(jì)工程師和制造廠商而言,先進(jìn)的功率半導(dǎo)體器件可以方便得到,先進(jìn)的電路拓?fù)浜涂刂品绞揭呀?jīng)開(kāi)始應(yīng)用,他們所剩下的就是想辦法提高自己的技術(shù)水平,同時(shí)創(chuàng)造更好的應(yīng)用機(jī)會(huì)和市場(chǎng)份額。
開(kāi)關(guān)電源是利用現(xiàn)代電力電子技術(shù),采用功率半導(dǎo)體器件作為開(kāi)關(guān),通過(guò)控制開(kāi)關(guān)晶體管開(kāi)通和關(guān)斷的時(shí)間比率(占空比),調(diào)整輸出電壓,維持輸出穩(wěn)定的一種電源。早在20世紀(jì)80年代計(jì)算機(jī)電源全面實(shí)現(xiàn)了開(kāi)關(guān)電源化,率先完成計(jì)算機(jī)電源換代,進(jìn)入90年代開(kāi)關(guān)電源已廣泛應(yīng)用在各種電子、電器設(shè)備,程控交換機(jī)、通訊、電力檢測(cè)設(shè)備電源和控制設(shè)備電源之中。開(kāi)關(guān)電源一般由脈沖寬度調(diào)制(PWM)控制IC和MOSFET構(gòu)成。開(kāi)關(guān)電源和線性電源相比,兩者的成本都隨著輸出功率的增加而增長(zhǎng),但兩者增長(zhǎng)速率各異。線性電源成本在某一輸出功率點(diǎn)上,反而高于開(kāi)關(guān)電源,這一點(diǎn)稱(chēng)為成本反轉(zhuǎn)點(diǎn)。隨著電力電子技術(shù)的發(fā)展和創(chuàng)新,使的開(kāi)關(guān)電源技術(shù)也不斷的創(chuàng)新,這一成本反轉(zhuǎn)點(diǎn)日益向低輸出電力端移動(dòng),從而為開(kāi)關(guān)電源提供了廣闊的發(fā)展空間。
開(kāi)關(guān)電源高頻化使其發(fā)展的方向,高頻化使開(kāi)關(guān)電源小型化,并使開(kāi)關(guān)電源更進(jìn)入更廣泛的應(yīng)用領(lǐng)域,特別是在高新技術(shù)領(lǐng)域的應(yīng)用,推動(dòng)了高技術(shù)產(chǎn)品的小型化、輕便化。另外開(kāi)關(guān)電源的發(fā)展與應(yīng)用在節(jié)約能源、節(jié)約資源及保護(hù)環(huán)境方面都具有重要的意義。
開(kāi)關(guān)電源的發(fā)展方向是高頻、高可靠、低耗、低噪聲、抗干擾和模塊化。由于開(kāi)關(guān)電源輕、小、薄的關(guān)鍵技術(shù)是高頻化,因此國(guó)外各在開(kāi)關(guān)電源制造商都致力同步開(kāi)發(fā)新型高智能化的元器件,特別是改善二次整流器件的損耗,并在功率鐵氧體(Mn-Zn)材料上加大科技創(chuàng)新,以提高在高頻率和較大磁通密度(Bs)下獲得高的磁性能,而電容器的小型化也是一項(xiàng)關(guān)鍵技術(shù)。SMT技術(shù)的應(yīng)用使得開(kāi)關(guān)電源取得了長(zhǎng)足的進(jìn)展,在電路板兩面布置元器件,以確保開(kāi)關(guān)電源的輕、小薄。開(kāi)關(guān)電源的高頻化就必然對(duì)傳統(tǒng)的PWM開(kāi)關(guān)技術(shù)進(jìn)行創(chuàng)新,實(shí)現(xiàn)ZVS、ZCS的軟開(kāi)關(guān)技術(shù)已成為開(kāi)關(guān)電源的主流技術(shù),并大幅提高了開(kāi)關(guān)電源的工作效率。對(duì)聯(lián)高可靠性指標(biāo),美國(guó)的開(kāi)關(guān)電源生產(chǎn)商通過(guò)降低運(yùn)行電流,降低結(jié)溫等措施以減少器件的應(yīng)力,使得產(chǎn)品的可靠性大大提高。
模塊化是開(kāi)關(guān)電源發(fā)展的總體趨勢(shì),可以用模塊化電源組成分布式電源系統(tǒng),可以設(shè)計(jì)成N+1冗余電源系統(tǒng),并實(shí)現(xiàn)并聯(lián)方式的容量擴(kuò)展。針對(duì)開(kāi)關(guān)電源運(yùn)行噪聲大這一缺點(diǎn),若單獨(dú)追求高頻化,其噪聲也必將隨著增大,而用部分諧振轉(zhuǎn)換電路技術(shù),在理論上即可實(shí)現(xiàn)高頻化又可降低噪聲,但部分諧振轉(zhuǎn)換技術(shù)實(shí)際應(yīng)用仍存在著技術(shù)問(wèn)題,故仍需在這一領(lǐng)域開(kāi)展大量的工作,使得多項(xiàng)技術(shù)得以實(shí)用化。電力電子技術(shù)的不斷創(chuàng)新,開(kāi)關(guān)電源產(chǎn)業(yè)有著廣闊的發(fā)展前景。要加快我國(guó)開(kāi)關(guān)電源產(chǎn)業(yè)的發(fā)展速度就必須走技術(shù)創(chuàng)新之路,走出有中國(guó)特色的產(chǎn)學(xué)研聯(lián)合發(fā)展之路,為我國(guó)國(guó)民經(jīng)濟(jì)的高速發(fā)展做出貢獻(xiàn)。
【上一個(gè)】 分析中國(guó)電源產(chǎn)業(yè)迎難而上 | 【下一個(gè)】 智能化帶動(dòng)開(kāi)關(guān)電源市場(chǎng)迅猛發(fā)展 |
^ 開(kāi)關(guān)電源開(kāi)始進(jìn)入技術(shù)變換的新時(shí)代 |